Sopka

Z Multimediaexpo.cz

Výlev lávy sopky Kilauea

Sopka neboli vulkán je místo na zemském povrchu, obvykle tvaru hory, kde roztavené magma vystupuje či vystupovalo z hlubin Země.[1] Na Zemi se obvykle vyskytují podél hranic litosférických desek a v takzvaných horkých skvrnách (angl. hotspot). Jedním z horkých bodů jsou například Havajské ostrovy, jiným Kanárské ostrovy – oba případy sopek vznikajících na oceánském dně; příkladem sopek spojených s kolizemi tektonických desek je japonská Fudžisan. Sopky se vyskytují také na jiných tělesech Sluneční soustavy, například vulkán Tvashtar na Jupiterově měsíci Io nebo největší hora sluneční soustavy Olympus Mons na Marsu.

Během vzniku sopky dochází k celé řadě událostí, které ovlivňují nejenom blízké okolí lávovými výlevy, vznikem tělesa sopky, ale i místa, která mohou být tisíce kilometrů daleko. Během sopečné erupce dochází k odplynování magmatu, čímž se uvolňují sopečné plyny, které mohou změnit klimatické podmínky na velkém území. V závislosti na vlastnostech magmatu, které se dere na povrch, vznikají různé druhy sopek. Mezi nejrozšířenější patří ploché štítové sopky vznikající bazaltickými magmaty a příkré stratovulkány.

Obsah

Vznik sopek

Druhy tektonických zlomů a vulkánů

Podle teorie deskové tektoniky se zemská kůra skládá z mnoha pevných desek, které plují na svrchní polotekuté části zemského pláště. Tato část se nazývá astenosféra. V místech, kde se desky stýkají, ale navzájem se podsunují či nadsunují jedna na druhou, bývá zemská kůra rozlámaná tak, že si zde magma, které je pod velkým tlakem, může najít cestu na zemský povrch. Tímto způsobem vzniká kráter sopky.

  • Jestliže je kráterem vyvrhována střídavě láva, sopečný popel, lapilli či pumy, které se ukládají okolo jícnu, vzniká kuželovitá hora – sopka. Klasickým případem je Fudži v Japonsku či Kilimandžáro v Tanzanii.
  • Opakováním sopečných výbuchů a ukládáním nových vyvrženin sopka roste nejen do výšky, ale i do šířky, a tak se některé z nich stávají největšími horami světadílů, například Mount McKinley (6194 m) Severní Ameriky.
  • Pokud sopečná činnost ustane, láva v kráteru utuhne a vytvoří tak pevnou zátku. Obnovený podzemní tlak magmatu nebo plynů může tuto zátku vyrazit a tak dojde k opětovnému sopečnému výbuchu.
  • V jiných případech si láva otevírá na povrch nové cesty, které ústí na svazích sopky – ty se pak nazývají parazitické krátery.
  • 5 až 30 kilometrů pod povrchem se nachází tzv. magmatický krb, místo odkud magma expanduje kráterem na povrch. Po prudkém sopečném výbuchu může tento magmatický krb vyhasnout, čímž se vytvoří ohromná podzemní jeskyně. Velmi často se stává, že se vrchol sopky zřítí právě do těchto míst, pak se vytvoří rozsáhlý kráter zvaný kaldera. Kaldery se často zaplňují vodou a vytvářejí kráterové jezero. Kráterová jezera mohou mít průměr mnoha kilometrů. Největší známá kaldera se nachází v oblasti Aso na japonském ostrově Kjúšú.

Druhy sopek

Explozivní

Výlevné

Podrobnější informace naleznete na stránce: Štítová sopka


Štítová sopka je druh sopky s velice pomalu ukloněnými svahy, které jsou tvořeny mnoha vrstvami vysoce mobilními a tedy viskózními lávami s malým obsahem podílu SiO2.[2] Oproti stratovulkánům nebývají štítové sopky explozivního charakteru a jejich erupce se projevují výlevem značného množství lávy do okolí.[3] Láva se v podstatě pouze vyvalí z trhliny a začne se rozšiřovat do okolí. Pohybující se láva ale může napáchat značné materiální škody.

Štítové sopky jsou obvyklé sopečné útvary, které vznikají v oblastech, kde se na povrch dostává málo viskózní magma. Na Zemi jsou nejznámější z oblasti Havajských ostrovů, kde se nachází Kilauea či Mauna Loa. Mimo Zemi jsou známé i z jiných planet jako Venuše či Marsu, kde se současně nachází i největší štítová sopka a hora v jednom v celé sluneční soustavě - Olympus Mons.

Smíšené

Podrobnější informace naleznete na stránce: Stratovulkán
Schéma erupce vulkánu

Nám, kteří žijeme na „vyhaslé půdě“ se v souvislosti se sopkami vybavují katastrofální erupce, které si vyžádaly mnoho lidských obětí a zničení měst.

Signály vulkánů

Kdyby si lidé, žijící ve vulkanických oblastech, života sopek více všímali, pravděpodobně by k tolika obětem na životech nedošlo. Vulkány totiž před erupcí varují dost zjevnými úkazy, kterými jsou slabší nebo silnější místní zemětřesení (vulkanické zemětřesení v oblasti sopky) unikající kouř (fumaroly) houstne a tmavne (zvyšuje se podíl sirných i dalších sopečných plynů, unikají nejdrobnější částice popelu), dochází i ke zvukovým efektům – dunění, změny tvaru vulkánu (sklonu svahů), pokud je v blízkosti moře, může stoupnout i teplota vody… Jsou to jakési varovné signály, na které instinktivně reagují živočichové a hromadně opouštějí místo, kde hrozí nebezpečí – zejména plazi jsou citliví i na malé seismické záchvěvy, odlétají ptáci a prchají i další živočichové.

Osudný Vesuv

Lidé v minulosti těmto úkazům nevěnovali mnoho pozornosti. I Vesuv varoval menšími i většími záchvěvy. K silnějšímu zemětřesení došlo v roce 62 n. l., kdy bylo v Pompejích pobořeno několik domů. Protože Pompejané od doby založení města (asi v 7. století př. n. l.) nepamatovali žádnou erupci Vesuvu, považovali vulkán za vyhaslý, zemětřesení považovali za projev hněvu bohů a nedávali je do souvislosti s vulkánem. To se jim stalo osudné.

Monitorování vulkánů

Erupce Vesuvu upoutávaly pozornost přírodovědců. V letech 1842–1845 byla na západním svahu Vesuvu (608 m n. m.) vybudována první vulkanologická observatoř na světě, kde byly umístěny seizmografické a další přístroje. Vesuv byl pravidelně sledován i v období klidu od roku 1913. V roce 1912 byla na vulkánu Kilauea na Havajských ostrovech vybudována další observatoř, která byla však smetena lávou a nová observatoř znovu vybudována v roce 1924. V současné době jsou na světě na všech nebezpečnějších sopkách vulkanologické observatoře, které jsou propojeny internetovou sítí. Tak jako meteorologové sledují jevy v atmosféře, tak vulkanologové sledují soustavně projevy vulkánu. Například na Vesuvu je rozmístěno několik seizmografických stanic na různých místech, které soustavně pořizují záznamy. Pravidelně jsou prováděny chemické rozbory fumarol a měřeny jejich teploty. Pokud jsou v kráterech některých sopek jezera, provádějí se chemické rozbory vody, stejně tak jsou sledovány event. prameny, vyvěrající ze svahů. Speciálními přístroji se měří sklony svahů vulkánu, který je sledován z výšky i satelity. Pomocí infračerveného záření se pořizují snímky, které ukazují barevně magmatický krb a eventuální pohyby magmatu.

Příznaky přicházející erupce

Podrobnější informace naleznete na stránce: Sopečná erupce

Častější seismické záchvěvy, jejichž intervaly se zkracují, změny chemického složení fumarol ve prospěch sirných plynů, amoniaku, metanu, vzácných plynů, zvyšování jejich teploty, zvyšování kyselosti vody (obsah kyseliny sírové), změny tvaru sopky, záznamy o pohybech magmatu – to vše nasvědčuje tomu, že vulkán se začíná probouzet. Určitou dobu trvá, než plyny a magma prorazí na povrch. A tak erupci, která se připravuje, lze předpovědět nejméně týden dopředu, takže je možné obyvatele ohrožených oblastí včas vystěhovat. Pro oblast kolem Vesuvu byl už vypracován evakuační plán.

Předpovědi erupcí

Vědě se podařilo mnohé o erupcích a jejich souvislostech se složením a hustotou (viskozitou) magmatu odhalit. Hustší a kyselejší magma, které bývá uloženo v menších hloubkách, je příčinou mnohem nebezpečnějších výbuchů, kdy je vyvrhováno obrovské množství plynů a popela, než magma řídké, zásaditější a vystupující z větších hloubek. Nedá se však přesně předpovědět, kdy k erupci dojde. Zde je možné provádět pouze odhady na základě toho, jak se vulkán projevuje – některé se probouzejí častěji – např. Etna i několikrát během jednoho desetiletí, zatímco jiné mají mezi erupcemi delší intervaly, často i nepravidelné - například Vesuv měl ve 20. století erupce v letech 1906, 1912, 1929, 1933 a 1944. Od té doby je v klidu, takže má určité „zpoždění“ ale v posledních letech dochází k častějším seismickým otřesům. Erupce je tedy v očekávání. Může to být kdykoliv, ale také později, třeba za desítky let.

Typy erupcí

Chování sopky záleží na složení a struktuře zemské kůry v jejím okolí a na stupni tuhosti lávy. Erupcí je několik typů, pojmenovaných podle jejich charakterů. Láva vytékající z kráteru modeluje tvar sopky, a proto je tvar sopky závislý na charakteru erupce. Každý typ erupce vytváří jiný tvar sopky.

  • Pliniovský typ erupce je způsoben výbuchem plynů, které se nahromadily pod ucpaným kráterem. Exploze vytvoří kráterový komín, jímž jsou rozžhavený popel, lapily a pumy vystřelovány vysoko do vzduchu. Erupce bývají prudké a výbušné. Právě tímto způsobem vybuchla sopka Vesuv roku 79 n. l. Pod jejím popelem byla pohřbeno město Pompeje a město Herculaneum. Mezi obětmi byl i římský přírodovědec Plinius Starší, po němž dostal tento typ sopečného výbuchu své jméno.
  • Peléiský typ erupce je prakticky nejničivější typ erupce pojmenovaný podle sopky Mont Pelée. Když explodovala, roku 1902, zpočátku Pomalu sopečnými plyny vytlačovaná kráterová „zátka“, byl vysoko do stratosféry vymrštěn pliniovský sloup popela a kusů žhavé lávy. Zároveň se dolů po úbočí hory valila smrtící lavina žhavých plynů a popele, která zahubila téměř všechny obyvatele nedalekého města Saint-Pierre, což činilo asi 30 000 lidí. Další katastrofální následky tohoto typu erupce měl i vulkán Krakatoa, a to 27. srpna 1883. Kráter vulkánu byl také ucpán kráterovou „zátkou“, ale zde bohužel nebyla vytlačena, takže došlo k explozi prakticky celého sopečného ostrova Krakatoa. Celý vulkán se při této explozi zdvihl do výše a při dopadu vytvořil devět vln tsunami až 37 metrů vysokých. Na indonéských ostrovech severní Jávy a jižní Sumatry se následkem této katastrofy utopilo 36 tisíc lidí. Ironií osudu je to, že na pozůstatcích ostrova (z celé plochy ostrova zůstala po erupci pouze jedna třetina) se, následkem sérií menších výbuchů, stihl do dnešní doby vytvořit nový vulkán. V dnešní době je okraj tohoto vulkánu, činného naposledy v roce 1995, vysoký 813 m.
Podmořské výrony lávy na Hawaii
  • Strombolský typ erupce nemívá oproti Pliniovskému a Peleiskému katastrofální následky. Je nazývaný podle sopky Stromboli na Liparských ostrovech, bývá „hlučný a velkolepý“. Žhavá láva je vymršťována vzhůru, ale obvykle padá zpět do kráteru, způsobené škody jsou tudíž malé. Podívaná na tento výbuch je z dostatečné vzdálenosti nejen bezpečná, ale i atraktivní a proto bývá často sledována místními obyvateli, vědci i turisty.
  • Havajský typ erupce vzniká jen zřídka. Je charakteristický pomalým vytékáním velmi řídké lávy ze širokého nízkého kráteru. To je výhodné pro zemědělce, neboť sopečné oblasti jsou dnes díky vysokému obsahu minerálních látek velice úrodné.

Vlivy erupcí na prostředí

Dostatečně mohutná sopečná erupce může silně zasáhnout nejen do života lidí žijících na svazích sopky a v jejím blízkém okolí, může ovlivnit i oblasti mnohem vzdálenější. Velké množství do vzduchu vymrštěného popela a nečistot totiž může vést k rozsáhlým podnebným změnám přetrvávajícím rok i déle na celé polokouli. Např. výbuch islandského vulkánu Laki v roce 1783 bývá dáván do spojitosti s Francouzskou buržoazní revolucí v roce 1789 - obrovské množství aerosolů uniklých do atmosféry způsobilo v průběhu následujících let znatelné ochlazení atmosféry severní polokoule Země; to se projevilo extrémní zimou téhož roku a v následujících letech chladným létem s nepředvídatelným počasím, které způsobilo neúrodu a následným nedostatkem potravin až hladomorem po celé Evropě - a nedostatek potravy pro populaci a její následná chudoba jsou považovány za jednu z příčin revoluce.

Při pokusech o vědecké vysvětlení biblických deseti egyptských ran se uvažuje o příčinné souvislosti s výbuchem sopky na ostrově Théra (dnes Santorini) někdy v letech 1645-1600 př.n.l.

Kapitolou samou o sobě jsou pak exploze sopečných ostrovů, které mohou být doprovázeny obrovskými tsunami, viz např. Krakatoa, Santorini.

Zajímavosti

  • Sopečný popel a prach, který se dostal do stratosféry po výbuchu Mount St. Helens roku 1980 a Pinatuba roku 1991, údajně ovlivnil na několik let světové klima.
  • Podle historických pramenů vybuchl asi 1500 let př. n. l. sopečný ostrov Santorini v dnešním Egejském moři. Dnes je Santorini oblíbený cíl mnoha turistů, nicméně po tomto výbuchu se vytvořila vlna tsunami, která mířila přímo na Krétu. Podle vzorků sedimentů se dnes vyvozuje, že vzniklá vlna byla vysoká přibližně 150 metrů a její zaplavení Kréty zničilo vyspělou mínojskou civilizaci.
  • Aktivní vulkanismus byl v současnosti pozorován také na Jupiterově měsíci Io, který je silně deformován slapovými silami. Z planet je předpokládán vulkanismus také na Venuši, ačkoliv ještě nebyl přístroji sond pozorován. Na planetě Mars jsou pozorovány geologicky nedávné (mladší než 100 miliónů let) lávové výlevy, které naznačují pokračující vulkanickou aktivitu i tohoto tělesa.

Nejničivější erupce

Sopka Země Rok Počet obětí
TamboraIndonésie181592 000
KrakatoaIndonésie188336 000
Mont PeléeMartinik190230 000
Nevado del RuizKolumbie198522 000
EtnaSicílie, Itálie166920 000
VesuvItálie7916 000
Unzen-DakeJaponsko179210 400
LakiIsland178310 000
KelutIndonésie19195000
Lávový proud tekoucí přes silnici pod sopkou Kilauea

Nejvýznamnější pozemské sopky

aktivní sopka výška  poslední výbuch 
Etna (Sicílie) 3350 m 2006
Vesuv (Apeninský poloostrov) 1277 m 1944
Stromboli (Liparské ostrovy)  926 m 2007
Santorin (Kyklady)  556 m 1956
Hekla (Island) 1491 m 2000
Pico de Teide (Tenerife) 3718 m 1909
Kamerunská hora (Kamerun) 4070 m 1982
Nyiragongo (Demokratická republika Kongo) 3475 m 2002
Kerinci (Sumatra) 3800 m 1987
Semeru (Jáva) 3676 m 1989
Krakatau (Sundská úžina)  813 m 1995
Fudžisan (Honšú) 3776 m 1707
Ključevskaja (Kamčatka) 4750 m 1994
Mount St. Helens (Washington, Spojené státy) 2250 m 1989
Colima (Mexiko) 3984 m 1988
Fuego (Guatemala) 3835 m 1988
Mont Pelée (Martinique) 1397 m 1929

Sopky v náboženství

Sopky odedávna přitahují pozornost člověka, vzbuzujíce respekt i úctu zároveň. Mnohé národy v minulosti, ale i dnes, považují sopky za posvátné nebo za sídla bohů. Již staří Řekové uctívali boha ohně Héfaista, který sídlil pod činnými sopkami. Staří Římané tohoto boha převzali pod jménem Vulcanus; odtud pochází i název pro sopky – vulkány.

Reference

  1. Co je sopka? [online]. [cit. 2007-10-09]. Dostupné online.  
  2. USGS - Shield Volcanoes [online]. USGS, [cit. 2009-03-15]. Dostupné online. (anglicky) 
  3. Shield volcanoes [online]. library.thinkquest.org, [cit. 2009-03-16]. Dostupné online. (anglicky) 

Související články

Externí odkazy

Commons nabízí fotografie, obrázky a videa k tématu
Volcano